ANALISIS DATA UPAH MINIMUM REGIONAL (UMR) MENGGUNAKAN METODE CLUSTERING, K-MEANS, HIERARHICAL CLUSTERER

Authors

  • neny rosmawarni Institut Sains dan Teknologi Nasional

Abstract

This study aims to analyze regional minimum wage data (UMR) in Indonesia using 3 algorithms, namely Simple K-Means, Percentage Split, and Hierarchical Clusterer by using Weka tools to see the results. The purpose of this data processing is to clarify data from Regional Minimum Wages (UMR) from several regions to determine the average income of employees. In processing this data there are several restrictions to facilitate the process. The data used is data from the Central Statistics Agency (BPS). The attributes used are Province Name, Year, UMR. 

Keywords: Weka, Regional Minimum Wage (UMR), Simple K-Means, Percentage Split, and Hierarchical Clusterer.

Downloads

Published

2020-01-22

How to Cite

rosmawarni, neny. (2020). ANALISIS DATA UPAH MINIMUM REGIONAL (UMR) MENGGUNAKAN METODE CLUSTERING, K-MEANS, HIERARHICAL CLUSTERER. JURNAL REKAYASA INFORMASI, 8(2), 124–129. Retrieved from https://journal.istn.ac.id/index.php/rekayasainformasi/article/view/487

Most read articles by the same author(s)